167/2016

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	Which on	e of the following town is not lo	cated on a riv	er bank?			
	(A)	Agra	(B)	Patna			
	(C)	Bhopal	(D)	Kolkata			
2.	'Meghala	ya' is the name given to the reg	ion correspon	ding to:			
	(A)	Siachin mountain ranges	(B)	Garo-Khasi hill region			
	(C)	Nagaland region	(D)	Satapura mountain region			
3.		as declared 11th July as the W in reached:	Vorld Populati	on Day since 1989 because the World			
	(A)	500 crore	(B)	700 crore			
	(C)	740 crore	(D)	750 crore			
4.	Who is th	e Vice Chairman of NITI Aayo	g?				
		Ramesh Chand	(B)	Raghuram Rajan			
	(C)	Arundathi Bhattacharya	(D)	Aravind Panagaria			
5.	Name the	National leader who put forwa	ard the 'Drain	Theory'.			
	(A)	Dadabhai Naoroji	(B)	S.N. Banerji			
	(C)	R.C. Dutt	(D)	Motilal Nehru			
6.	Who was the President of Indian National Congress when congress signed merger pact with Muslim League in 1916?						
		S.P. Sinha	(B)	Mrs. Annie Besant			
	(C)	Bhupendranath Bose	(D)	A.C. Majumdar			
7.			Bose elected	as the President of Indian National			
		in first time :					
	(A)	Lucknow	(B)	Tripuri			
	(C)	Haripura	(D)	Lahore			
8.		great experiment in Satyagrah					
		Dandi	(B)	Ahmedabad			
	(C)	Bardoli	(D)	Champaran			
9.	In which	place we can see Paradesi Sina	gogue?				
	(A)	Kanyakumari	(B)	Mananthavadi			
	(C)	Mattancherry	(D)	Thrissur			
10.	The first	Mamankam festival was condu	cted at:				
	(A)	Varkkala	(B)	Thirunnavaya			
	(C)	Kodungallur	(D)	Thiruvananthapuram			

11.	Which social reformer started the Journal Abhinava Kerala in 1921?							
	(A)	Sivananda Yogi	(B)	Sri Narayana Guru				
	(C)	Ayyankali	(D)	Vagbhatananda				
12.	Kochi Raj	a conferred the title 'Kavithilakan' to	an emi	nent social reformer of Kerala was :				
	(A)	Pandit Karuppan	(B)	Sahodaran Ayyappan				
	(C)	Poyikayil Yohannan	(D)	Mannath Padmanabhan				
13.	Adukkala	yil Ninnu Arangathekku the play wr	itten by					
	(A)	Vagbhatananda	(B)	V.T. Bhattathiripad				
	(C)	K.P. Kesava Menon	(D)	Brahmananda Shiva Yogi				
14.	Who start	ed the newspaper Swadeshabhimani						
	(A)	K. Ramakrishna Pillai	(B)	K.P. Kesava Menon				
	(C)	Vakkam Abdul Khader Moulavi	(D)	Kandathil Varghese Mappila				
15.	Who form	ed the Ezhava Maha Sabha?						
	(A)	Sri Narayana Guru	(B)	Kumaran Asan				
	(C)	Sahodaran Ayyappan	(D)	Dr. Palpu				
16.		wly elected Prime Minister of Nepal						
	(A)	K.P. Sharma Oli	(B)	Pushpa Kamal Dahal				
	(C)	Sher Bahadur Deuba	(D)	Bidhya Devi Bhandari				
17.	'Patidar agitation'. demanding reservation in Government Jobs and Educational Institution							
		the State of:	(D)	26.1				
	(A)	Rajasthan	(B)	Maharashtra				
	(C)	Gujarat	(D)	Andhra Pradesh				
18.		e Marathone runner lights the Olym						
	(A)		(B)	Dilma Rousseff				
	(C)	Paulinho da Viola	(D)	Wanderle de Lima				
19.		Shackle's a documentary on the pligh						
	(A)	Sangita Iyer	(B)	Akeeran Kalidasan Bhattathiripad				
	(C)	Superna Ganguly	(D)	Dr. Raman Sukumaran				
20.		e Present Chairman of Kerala State						
	(A)	Kamal	(B)	Fasil				
	(C)	Ranjith	(D)	KPAC. Lalitha				
21.	If P is a	square matrix, then $P - P^T$ is alway						
	(A)		(B)	Skew Symmetric				
	(C)	Singular	(D)	Non Singular				
167	/2016	4						

- 22. Inverse of the matrix $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ is:
 - (A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (C) $\begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

- (D) $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$
- The term containing x^8 in the expansion of $\left(2x \frac{1}{2x}\right)^{20}$ is the :
 - (A) 12th term

(B) 8th term

(C) 7th term

(D) 6th term

- The value of $\sec(-240^{\circ})$ is:

(C) $\frac{-\sqrt{3}}{2}$

(D) $\frac{\sqrt{3}}{2}$

- 25. If $P = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then $P^3 =$
 - (A) $\begin{bmatrix} \cos^{3}\theta & \sin^{3}\theta \\ -\sin^{3}\theta & \cos^{3}\theta \end{bmatrix}$ (C) $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$

(B) $\begin{bmatrix} \cos \theta & \sin 3\theta \\ -\sin 3\theta & \cos \theta \end{bmatrix}$ (D) $\begin{bmatrix} \cos 3\theta & \sin 3\theta \\ -\sin 3\theta & \cos 3\theta \end{bmatrix}$

- Area of the region in the first quadrant bounded by the x axis, the circle $x^2 + y^2 = 4$ and the chord of this circle which makes an angle 45° with the positive direction of x - axis is
 - (A) $\frac{\pi}{2}$ sq. units

(B) π sq. units

(C) 2π sq. units

(D) $\sqrt{2\pi}$ sq. units

- 27. The value of $\lim_{x\to 2/3} \frac{27x^3-8}{27x-18}$ is:
 - (A) Not defined

(C) $\frac{4}{2}$

- (D) $\frac{8}{9}$
- The maximum value of $\sin x + \cos x$ is:
 - (A) 2

(B) 1

(C) √2

(D) $\frac{1}{\sqrt{2}}$

١

			J9				
29.	The value	of the definite integral	$\int \frac{(\log x)^3}{x} dx \text{ is :}$				
	(A)		(B)	1			
	(C)		(D)	$\frac{e^2}{4}$			
30.	General so	olution of the differentia	l equation $\tan x \frac{dy}{dx}$	$y = \cos e c x \tan x$ is:			
				$y \csc x + \cot x = C$			
		$y\sin x = x + C$		$y + \cos x = C$			
	(C)	$y\cos x = x + C$	(D)	y + cos x = 0			
31.	The main	constituent of a Portland	d Cement is :				
	(A)	Lime	(B)	Alumina			
	(C)	Iron Oxide	(D)	Magnesium Oxide			
32.	Type of co	ncrete mix used in R.C.O	C. Work (Buildings) :				
-	(A)	M ₁₀	(B)	M ₁₅			
	(C)	M ₂₀	(D)	M ₂₀₀			
33.	When the	water table is close to t	he ground surface, t	he bearing capacity of a soil is reduc	e		
	(A)	Three - fourth	(B)	One - half			
	(C)	Two - third	(D)	One - fourth			
34.	A staff re	ading taken on a bench I	nark or a paint of kn	own elevation is called :			
04.		Intermediate sight	(B)	Back sight reading			
	(C)	Fore sight reading	(D)	Line of collimation			
35.	The power of a telescope to form distinguishable images of objects separated by small angula distance is called its:						
	(A)	Resolving power	(B)	Brightness			
	(C)	Sensitivity	(D)	Definition			
36.	What typ		generally employed	d in two stroke engines used in t	W		
	(A)	Water cooling	(B)	Air cooling			
	(C)	Oil cooling	(D)	All of the above			
37.	The comp	ression ratio of a diesel	engine is in the rang	e from:			
	(A)	9-11	(B)	1-5			
	(C)	15-24	(D)	None of these			
38.	The funct	tion of a flywheel in an a	utomobile is to:				
	(A)	Convert reciprocating		ion			
	(B)	Transfer the engine to	rque to gearbox				
	(C)	To store the energy du	ring the working str	oke of the engine			
	(D)	All of the above					
167	//2016		6		1		

39.	A Kaplar	turbine is preferred when the avai	lable hea	d is:
		Low	(B)	Medium
	(C)	High	(D)	None of these
40.	In a nucl	ear reactor, heavy water can be idea	ally used	as:
	(A)		(B)	
	(C)		(D)	All of the above
41.	Form fact	tor is equal to :		
		Average value	1000	r.m.s. value
	(A)	r.m.s. value	(B)	
				Average value
	(C)	r.m.s. value	(D)	Average value
		instantanious value		instantanious value
42.		Power factor lies in between:		
	(A)	0 and 1	(B)	0 and 10
	(C)	10 and 100	(D)	10 and 1000
43.	Two resis	ters R_1 and R_2 give combined re-	sistance o	of 6 ohm when in series and 0.83 ohm
	when in p	arallel. The resistances are :		
	(A)	3 ohm and 3 ohm	(B)	4 ohm and 2 ohm
	(C)	5 ohm and 1 ohm	(D)	4.5 ohm and 1.5 ohm
44.	In an R, I	, C series circuit impedance Z is e	qual to:	
	(A)	$\sqrt{R^2 + (X_L \sim X_C)^2}$	(B)	$\sqrt{R^2 - (X_L \sim X_C)^2}$
	(C)	$\sqrt{R^2 + XL^2}$	(D)	$\sqrt{R^2 + XC^2}$
15.	A wire ha	ving resistance R_1 is stretched to d	ouble its	length. The new resistance R_2 is:
	(A)		(B)	$2R_1$
	(C)	4 R ₁	(D)	$\frac{R_1}{2}$
16.	When volt	age applied to a diode is more than	PIV, it is	likely to result in :
		More distortion on output side		Poor regulation
	(C)	Conduction in both direction	(D)	Breakdown at the junction
17.	Which of t	these cells in GSM / CDMA network	s are use	d for densely populated areas?
	(A)	Macro cells	(B)	Micro cells
	(C)	Selective cells	(D)	Umbrella cells
18.			rollers to	store the results of certain program
	instruction	ns are called a ———.		
	(A)	Status Register	(B)	Program Counter
	(C)	Flag	(D)	DPTR

49.	What is th (A) (C)	ne typical drop 2 V 100 mV	out voltage	e across 7	805 fixed (B) (D)	positive voltage 1.5 V 4 mV	regulator?	
50.	A cell of a discharge	and charge of	has an Al	h efficienc 1.6 V res	ey of 80%. spectively.	It has an aver. The Watt-hour	age terminal volta r efficiency of the	age on cell is
	(A)	50%			(B)	60%		
	(C)	80%			(D)	100%		
51.	Find the	Thevenin's volt	age across	the point	s A and	B in the followi	ng circuit :	
				Α				
			5Ω	5 5 5	2			
				ξ5Ω	(1) 1A			
		5 V		3.12	Y			
	(A)	5 V		В	(B)	10 V		
	(C)	15 V		D	(D)	12.5 V		
	Which of	the following o	urrante con	n induce t	he maxim	um induced vol	tage in a coil?	
52.	(A)	1 A, DC	urrents car	ii iiidade t	(B)	1 A, 100 Hz		
	(C)	1 A, 1 Hz			(D)	20 A, DC		
	A bandno	on filtor has a	handwidth	of 4 kHz	with a cer	tral frequency	of 50 kHz. If the g	gain at
53.	48 kHz is	10 dB, what is	the maxir	num gain	?			
	(A)	CALL STREET, CALL			(B)	7.32 dB		
	(C)	13.6612 dB			(D)	10 dB		
54.	In a 3 ph	nase power me	asurement	t using twactor of th	vo wattme	eter method, bo	oth wattmeters gi	ve the
	(A)	0.5 lag	The state of		(B)	Unity		
	(C)	0.5 lead			(D)	Zero		
55.	A spheric radius 0.: capacitan	2 m. The space	s an inner in betwee	conduction is filled	ng sphere I with a d	of 0.1 m and ou ielectric of peri	ter conducting spl meability ε . Wha	here of t is its
	(A)	$4\pi \varepsilon$			(B)	$8\pi \varepsilon_0$		
	(C)	0.8πε			(D)	1.25πε		
56.	Divergen	ce of curl of an	y vector is	:				
	" (A)	0			(B)	same vector		
	(C)	null vector			(D)	unity vector		
57.	. Two indu		each are c	oupled to	gether. Th	e maximum val	lue of mutual indu	ctance
	(A)				(B)	0.5 H		
	(C)	0.25 H			(D)	1 H		
16	7/2016				8			A
							A	

58.	The indu	of turns is dou	ng solenoid is m bled?	easured as 1 i	nH. What will be	its inductance, if the
	(A)	1 mH		(B)	4 mH	
	(C)	0.5 mH		(D)	2 mH	
59.	The ener will be th	gy stored in th ne stored energ	e magnetic field y if the number	of a solenoid of turns is dou	arrying a current bled and the curre	of 10 A is 0.5 J. What ent is halved?
	(A)			(B)	2 J	
	(C)	0.5 J		(D)	0.25 J	
60.					rics, as shown in the total capacitan	n the figure. If the nce?
			ε _A = 2			
			$\epsilon_{\rm B} = 2$	$\epsilon_{\rm C} = 4$		
			-			
				•		
	(A)	$3\mu F$		(B)	$8 \mu F$	
	(C)	2 μF		(D)	4 μF	
61.		mum regulatio um regulation		er occurs at a	power factor of 0.7	07. The power factor
	(A)	0.806		(B)	0.707	
	(C)	Unity		(D)	0.5	
62.					s measured as 4 PF wattmeter, who	0 W using an LPF
	(A)	> 40 W		(B)		
	(C)	40 W		(D)	Cannot predict	
63.	same mad					10 A current. If the t what percentage of
	(A)	89%		(B)	100%	
	(C)	102%		(D)	112%	
64.	In a Brush	h Less DC (BL	DC) motor, the	construction of	motor is similar to	o:
	(A)	Stepper		(B)	Universal motor	
	(C)	DC motor		(D)	Synchronous mot	or
35	The load o	ngle of a nowfe	atly component	d DC motor in	The Late Control	

(A) 0° (C) 180°

(B) 90°

(D) Between 0° and 90°

	found to b	e 1440 r	pm. If the machine	runs at 850 rpm	at 30 Hz, what is th	e slip?
	(A)	0.03		(B)	0.06	
	(C)	0.04		(D)	0.0556	
67.	The maximachine?		iciency of an induct	ion motor occurs	at 4 kw. What will	be the rating of the
	(A)			(B)	4 kw	
	(C)	3.5 kw		(D)	8 kw	
68.	short circ	uit and	a terminal voltage in the machine at a	of 2000 V in or	en circuit. The ma	current of 400 A in gnitude of internal
69.	current a	at unity	otor is connected t power factor. The s the load angle?	o an infinite bu	eactance is 1.0 pu	and draws 1.0 pu and resistance is
	(A)	90°		(B)	45°	
**	(C)	O _o		(D)	60°	
70.	(A) (B) (C) (D)	ine? Machin Speed Machin Contin	ne will stop will be halved ne will burn nue run at the same	speed as motor		what will happen to
71.		age resis	tance of a 100 km le	ong cable is 1m?	2. For a length of 50	km, the resistance
	will be:					
	(A)	$2 \text{ m}\Omega$		(B)	1mΩ	
	(C)	$4\mathrm{m}\Omega$		(D)	0.5 m Ω	
72.	For an in same. The (A) (B) (C) (D)	e reason motor amme windir	is: is faulty ter used is faulty ngs may have burnt		d and full load curr	ents are almost the
73.	Two powers $B_{22} = 0.0$ $P_2 = 100$	005, E	P_1 and P_2 are constant $P_2 = -0.0001$. What	nected by a lossy at is the power	v line with loss coeff r loss for genera	ficients $B_{11} = 0.001$, tions $P_1 = 50 MW$,
		2.5 M	W	(B)	10 M	
	(C)			(D)	7 MW	
167	/2016			10		A

66. In a v/f controlled induction motor which runs at 50 Hz and rated voltage, the speed was

- 74. In the case of a single L-N fault of a 3 phase isolated neutral power system, what will be the voltage on healthy phases? The line-to-line voltage is V kV:
 - (A) 2 V kV

(B) 0 kV

(C) V kV

- (D) √3 V kV
- 75. A lossless transmission line having surge impedance loadings of 2000 MW is provided with a distributed series capacitive compensation of 200 MVAR. The SIL of the compensated line will be:
 - (A) 2000 MW

(B) 1800 MW

(C) 2200 MW

- (D) 2010 MW
- 76. A voltage of $5+\sqrt{5}\sin(314t+30^\circ)+5\sqrt{5}\sin 628t$ was measured with a capacitive coupled rms meter. What will be the reading?
 - (A) √130

(B) 5

(C) · √155

- (D) 0
- 77. A DC ammeter has a resistance of 0.1Ω and its currents range is 0-100A. If the range is to be extended to 0-500A, then the shunt resistance should be:
 - (A) 0.5Ω

(B) 0.25Ω

(C) 0.025Ω

- (D) 0.05Ω
- 78. A single phase energy meter is operating on 200 V, 50 Hz supply with a load of 10 A for two hours at 0.8 p.f. The meter takes 1800 revolutions in that period. The meter constant is:
 - (A) 1800 rev/kwh

(B) 900 rev/kwh

(C) 1000 rev/kwh

- (D) 500 rev/kwh
- 79. What will be the reading on the wattmeter connected in the following figure? Assume balanced supply:

(A) 500 W

(B) -1000 W

(C) 1000 W

- (D) -500 W
- 80. Which of the following device will be chosen to measure the flow of fluid in open channel?
 - (A) Pilot tube

(B) Ring Balance flow meter

(C) Rotameter

(D) Piston flow meter

- 81. A system is having a transfer function of $\frac{1}{s+a}$. What will be its impulse response?

(B)

(C) t2

- (D) eat
- The transfer function $\frac{V_2(s)}{V_1(s)}$ of the circuit shown below is:

(B) $\frac{2RCS}{CS (1 + RCS)}$ (D) $\frac{1 + RCS}{1 + 2RCS}$

 $\frac{1 + 2RCS}{CS (1 + RCS)}$

- For the unity feed back control system whose open loop transfer function is $\frac{1}{s(s+1)}$, the natural frequency of oscillation is:
 - (A) 2 rad/sec

0.5 rad/sec (B)

(C) 5 rad/sec

- 1 rad /sec (D)
- The number of roots on the equation $2s^4 + s^3 + 2s^2 + 5s + 7 = 0$ that lie in the right half of 84. s-plane is:
 - (A) 2

(C) 1

- The loop gain GH of a closed loop system is given by the following expression $\frac{K}{s(s+2)(s+4)}$

The value of K for which the system just becomes unstable is:

(A) 10

(B) 30

(C) 48

- (D) 100
- For a signal $f(t) = 15 \sin 4\pi t + 5 \cos 8\pi t + 3 \sin 18\pi t$, the minimum sampling frequency 86. should be:
 - (A) 18

(B)

(C) 8

- What is the rms value of the following voltage waveform?

40 V (A)

100 V (C)

50/√2

- 88. Given two continuous time signals $X(t) = e^{-t}$ and $y(t) = e^{-2t}$ which exist for t > 0, their convolution is:
 - (A) e-t

(B) $e^{-t} - e^{-2t}$

(C) e-2t

- (D) $e^{-t} + 2e^{-2}$
- 89. A rectangular current pulse of duration T and magnitude 1 has the Laplace transform :
 - (A) 1

(B) $1 - e^{-T}$

(C) $\frac{1-e^{-Ts}}{s}$

- (D) s
- 90. For the function $F(s) = \frac{10}{s(s^2 + 10s + 1)}$ the initial value of f(t) is equal to:
 - (A) 10

(B) 1

(C) 0

- (D) 00
- 91. What does Vout equal in the following figure?

(A) - 41 mV

(B) 5 V

(C) 8.2 V

- (D) 41 mV
- 92. For a Butter worth filter of second order, the gain of the amplifier should be :
 - (A) 1.414

(B) 1

(C) 2

- (D) 1.586
- 93. What are the trip points of the following Schmitt trigger circuit?

(A) 0V and 1V

(B) + 0.127 and -0.127

- (C) +0.271 and -0.271 V
- (D) +0.32 and -0.32 V

94. The number of times the instruction sequence below will loop before coming out of loop is :

MOV AL,

OOH

INC AL

JNZ A

(A) 256 (C) 0 (B) 255

(D) 100

95. For the DAC shown below, what is the resolution for digital inputs of 0 and 1?

(A) 0.125 v/bit

(B) 0.117 v/bit

(C) 0.1 v/bit

(D) 0.2 v/bit

96. In the following figure, if $C = 10 \,\mu\,F$ and $L = 1 \,\mathrm{mH}$, and $V_o = 100 \,\mathrm{V}$, the peak current through the diode is:

(A) 100 A

(B) 50 A

(C) 10 A

(D) 5 A

97. If the supply voltage to a 3 phase full wave controlled rectifier is 100 V (rms line - to - line), what is the maximum average voltage output possible?

(A) 100√2 V

(B) 234 V

(C) 117 V

(D) 135 V

98. The lowest dominant harmonic frequency component from a sine - triangle PWM voltage with a carrier frequency of 1 kHz and modulating voltage of 50 Hz is:

(A) · 50 Hz

(B) 150 Hz

(C) 100 Hz

(D) 1 kHz

99. Which time harmonic order voltage will produce negative torque in an induction machine?

(A) 5th

(B) 7th

(C) 3rd

(D) 13th

100. In a sine - PWM modulating sine wave, 10 V peak of 3rd harmonic component was added. What will be the 3rd harmonic component in the line - to - line voltage output?

(A) 17.3 V

(B) $\frac{10}{\sqrt{2}}$ V

(C) 0 V

(D) 10 V